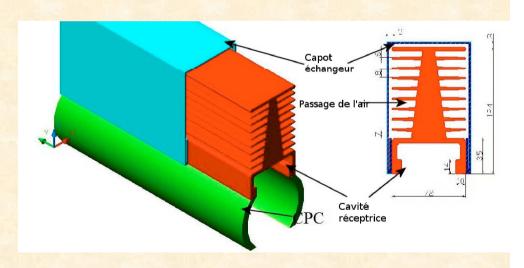

Analyse énergétique et exergétique d'une installation de micro-cogénération solaire

Muriel Alaphilippe, Françoise Strub
Pascal Stouffs



Le capteur solaire = concentrateur + Échangeur 'H'

Échangeur réchauffeur 'H'

Concentrateur Parabolique Composé

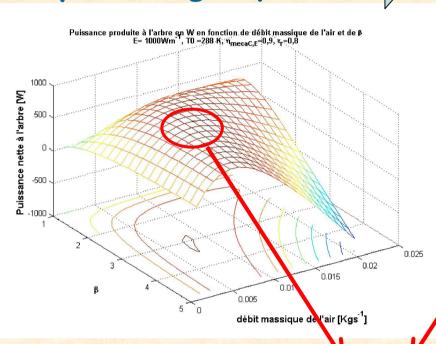
Caractéristiques du système étudié

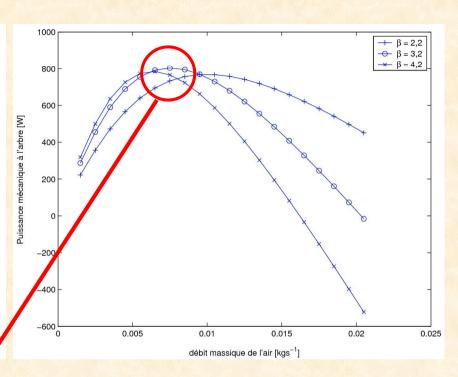
paramètres	valeurs
L	2,50 m
L_{N-S}	2,348 m
l_{pap}	$0.04 \mathrm{m}$
εF	0,15
η_c	0,7
$\eta_{meca,C}$	0,9
$\eta_{meca,E}$	0,9
$\eta_{si,C}$	0,9
$\eta_{si,E}$	0,9
h_{free}	$10{ m Wm^{-2}K^{-1}})$
ϵ_r	0,8
P_0	$10^5\mathrm{Pa}$
T_0	$288,15\mathrm{K}$
γ	1,4
$c_{p,air}$	$1004~\mathrm{Jkg^{-1}K^{-1}}$
S_P	$0,0029 \text{ m}^2$
D_M	$0.0086~\mathrm{m}$
Pr	0,7

Capteur cylindro-parabolique 'Soleil-Vapeur'

taux de concentration = 58,7

Surface d'ouverture


5,87 m²


Flux solaire constant

 $E = 1000 W/m^2$

 $T_0 = 288 \text{ K}$

Analyse énergétique

Un point optimal de fonctionnement qui maximise la puissance mécanique

$$\beta = 3.2$$
 et $\dot{m} = 0.0075 \text{ kg/s}$

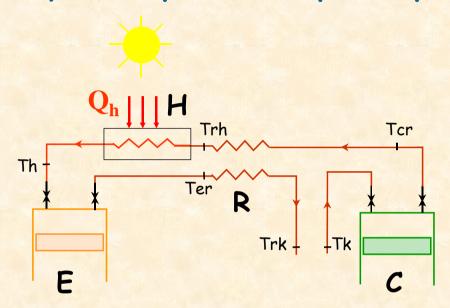
- faible variation des performances autour du point de fonctionnement (souplesse de fonctionnement du système),
- faible débit = faible vitesse d'air = faibles pertes de charges (cf hyp.)
- faible rapport de pression = technologie simple

Résultats au point optimal

Paramètre	valeur	
T_k	288, 15 K	
T_{cr}	$414, 4\mathrm{K}$	
T_{rh}	$699, 3 \mathrm{K}$	
T_{p0}	$786\mathrm{K}$	
T_{pL}	$1066\mathrm{K}$	
T_h	$1034\mathrm{K}$	
T_{er}	$770, 5 \mathrm{K}$	
T_{rk}	$485, 6\mathrm{K}$	
\dot{Q}_{sol}	$5870\mathrm{W}$	
\dot{W}_i	$1139\mathrm{W}$	
\dot{W}_{net}	$803, 5 \mathrm{W}$	
\dot{W}_{lec}	763, 3 W	
\dot{Q}_k	$1645\mathrm{W}$	
η_i	40,9%	
η_{mot}	28,9%	
$\eta_{global\ solaire/elec}$	13 %	
ηglobal solaire/elec+ch	aleur 41 %	

Système adapté à la cogénération

Rendement de conversion Solaire/Électricité


13%

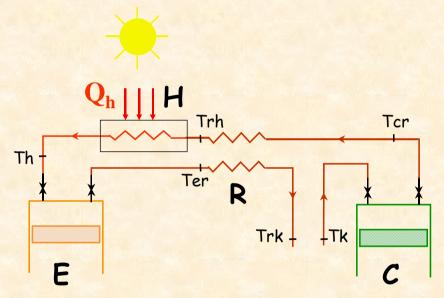
Solaire/ Électricité +Chaleur >200°C

41%

Seul rejet : air pur

Analyse exergétique du système au point optimal

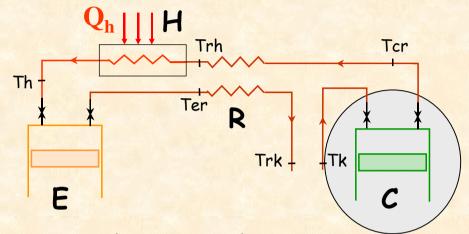
En chaque point i du cycle: Calcul du flux d'exergie


$$\dot{E}x_i(T_{i,},P_i) = \dot{m}\left(h\left(T_{i,},P_i\right) - T_0 \ s(T_{i,},P_i)\right)$$

Pour chaque composant du système C, R, H, E:

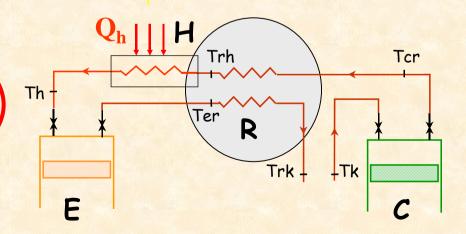
- Identification du produit et de la ressource exergétique
- Bilan des flux d'exergie
- Rendements exergétiques
- Exergie détruite

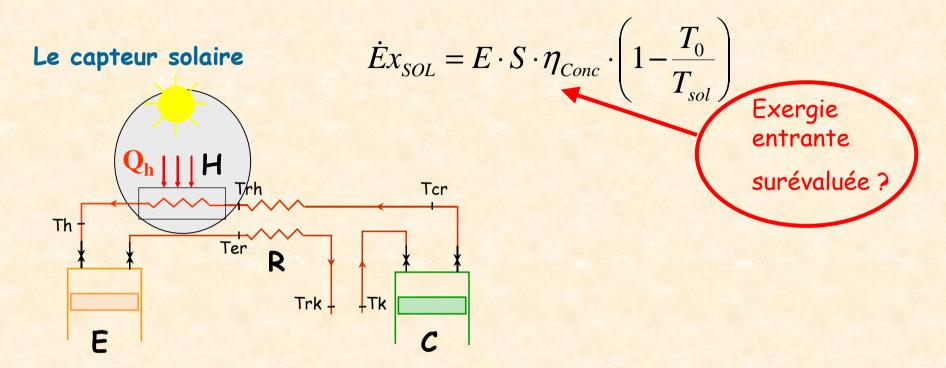
$$\eta_{ex} = \frac{\dot{E}x_{Produit}}{\dot{E}x_{Ressources}}$$


$$\dot{E}x_D = \dot{E}x_{Produit} - \dot{E}x_{Ressources}$$

Compression 'C'

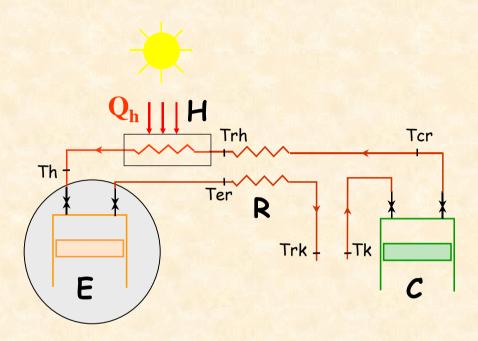
$$\eta_{ex,C} = \frac{\dot{E}x_{cr} - \dot{E}x_{k}}{\dot{W}_{C,r}}$$


$$\dot{E}x_{D,C} = \dot{W}_{C,r} - \left(\dot{E}x_{cr} - \dot{E}x_{k}\right)$$



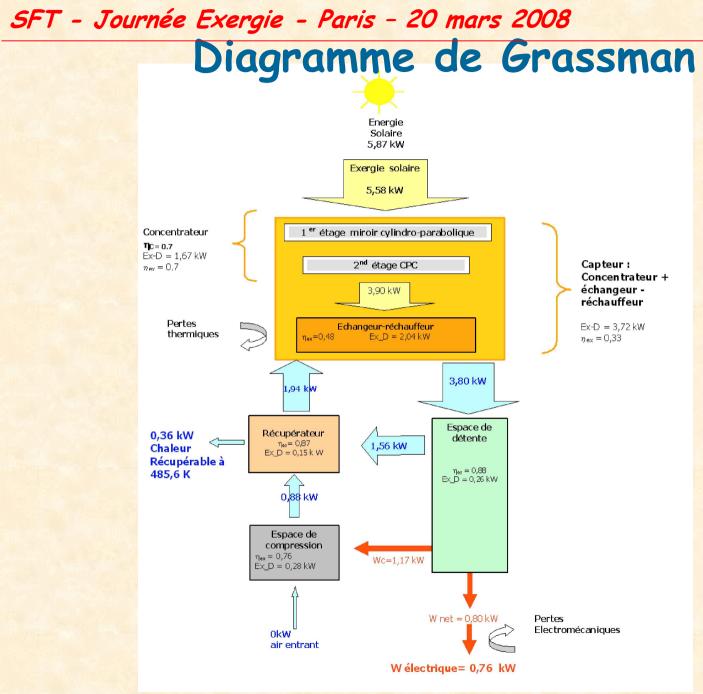
Récupérateur 'R'

$$\eta_{ex,R} = \frac{\dot{E}x_{rh} - \dot{E}x_{cr}}{\dot{E}x_{er} - \dot{E}x_{rk}} \qquad \dot{E}x_{D,R} = \dot{E}x_{er} - \dot{E}x_{rk} - (\dot{E}x_{rh} - \dot{E}x_{cr})$$

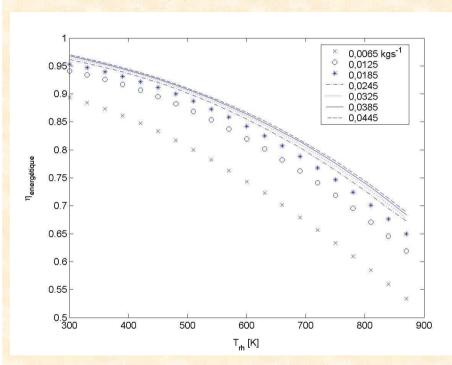

Rôle du récupérateur? Produit ressource

$$ho$$
 Concentrateur $\eta_{\rm ex,\,conc} = \eta_{\rm c}$ $\dot{E}x_{D,conc} = (1 - \eta_{\rm c}) \, \dot{E}x_{SOL}$

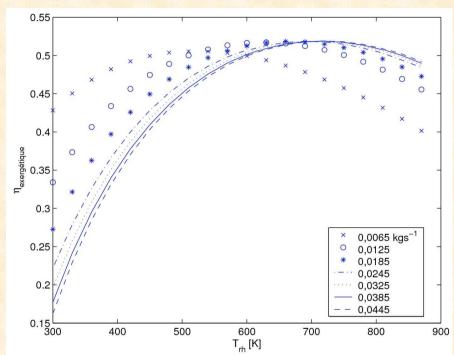
Détente 'E'


$$\eta_{ex,E} = \frac{\dot{W}_{E,r}}{\dot{E}x_{h} - \dot{E}x_{er}}$$
 $\dot{E}x_{D,E} = (\dot{E}x_{h} - \dot{E}x_{er}) - \dot{W}_{E,r}$

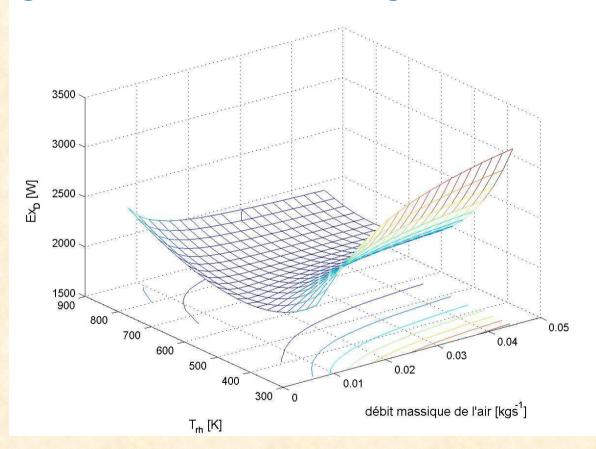
Résultats


Exergie détruite $Ex_D(W)$	Taux de destruction d'exergie (%)	η_{ex}
283	6,4	0,76
155	3,5	0,87
3719	84,2	0,33
1673	<u> </u>	0,7
2045	æ	0,48
258	5,9	0,88
4415	100	0,20
	$Ex_D(W)$ 283 155 3719 1673 2045	$Ex_D(W)$ d'exergie (%) 283 6,4 155 3,5 3719 84,2 1673 - 2045 - 258 5,9

Utilisation


thermique À quel niveau de T

Analyse énergétique et exergétique de l'échangeur réchauffeur 'H'


si T_{rh} (Te) augmente =>
η_{ener.} diminue
Rôle négatif du préchauffage

si T_{rh} (Te) augmente =>
un point optimal η_{exer}

Rôle positif du préchauffage
autour de 500K → 700K selon les
débits =>récupérateur efficace!

Exergie détruite dans l'échangeur réchauffeur 'H'

Confirme => Intérêt de préchauffer l'air pour diminuer la destruction d'exergie dans l'échangeur 500-700K

Conclusion

Analyse Exergétique...

- le capteur représente la plus grande source d'irréversibilités du procédé (84% de la destruction d'exergie totale).
- Performances améliorées si Trh>500-700 K
- Faible influence du débit d'air.

- Nécessité d'installer un récupérateur performant
- recherche des performances maximales sur le capteur solaire

Conclusion

L'analyse exergétique

Des intérêts =>

- Localisation des destructions d'exergie
- Optimisation des performances des systèmes
- Aide pour la conception du système

Des difficultés =>

- Quantifier l'exergie solaire entrante
- Définition du rôle du récupérateur pour un cogénérateur (priorité chaleur ou électricité)
- Pour quantifier l'exergie thermique nécessité de définir le besoin de chaleur et son niveau de température

