






# La micro-cogénération à pile à combustible : Une réalité commerciale au Japon

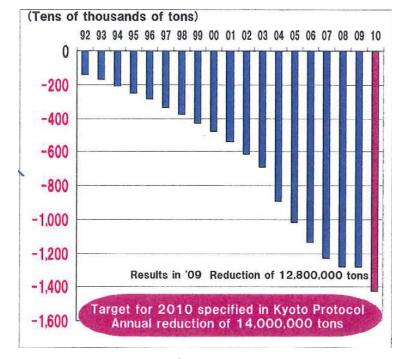
Stéphane HODY - GDF SUEZ, DRI/CRIGEN

### Plan de la présentation

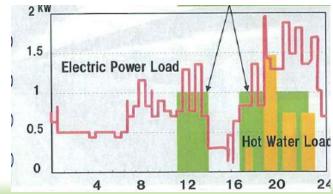


- 1. Une pile à combustible au gaz naturel
- 2. Contexte de la micro-cogénération au Japon
- 3. Une feuille de route clairement établie, avec le soutien de l'Etat dans la durée : ECOWILL ENEFARM SOFC
- 4. L'implication des industriels : gaziers et fabricants
- 5. Acteurs et produits
- 6. Quelles perspectives pour l'Europe et en particulier la France



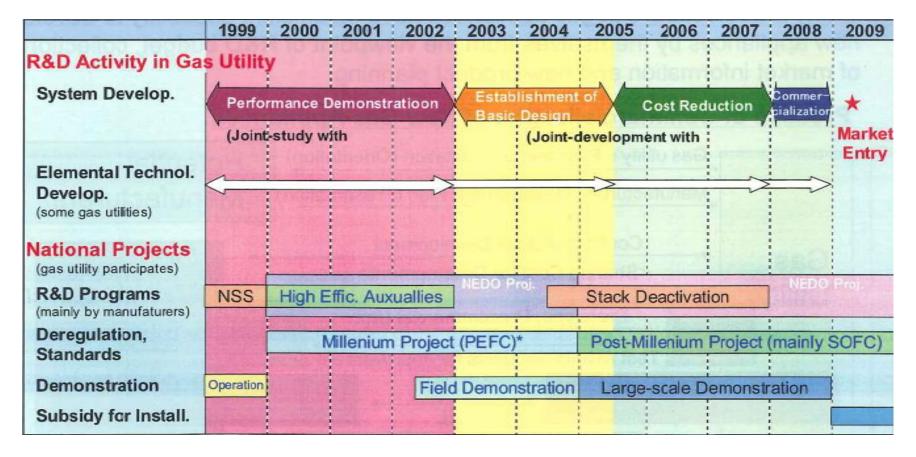

Deux types de pile à combustible pour la micro-cogénération au gaz naturel




- •Pile à combustible : convertisseur électrochimique, transformant l'énergie chimique d'un gaz directement en électricité et chaleur
- Piles de type PEMFC (Proton Exchange Membrane Fuel Cell)
  - Fonctionnement à basse-température (80°C classiquement)
  - Electrolyte à membrane polymère avec électrodes avec catalyseur Platine
  - Nécessité de convertir préalablement le gaz naturel en un gaz riche en hydrogène (sans CO) : reformage avec purification chimique poussée
- Piles de type SOFC (Solid Oxide Fuel Cell)
  - Fonctionnement à haute-température (700-800°C)
  - Electrolyte céramique et électrode sans métaux nobles
  - Peut fonctionner directement au méthane (ou reformage simple sans purification CO)

### Contexte de la micro-cogénération au Japon se suez

- L'ensemble des acteurs, pouvoirs publics inclus, croient au potentiel de la cogénération pour réduire au global les consommations d'énergie primaire et les émissions de CO2
- Les prix des énergies élec et gaz sont très favorables à l'introduction de la cogénération. Dans la région de Tokyo, pour un client résidentiel
  - Prix du gaz ~ 10 c€/kWh
  - Prix de l'élec ~ 21,5 c€/kWh
  - Δ élec-gaz ~2 fois plus élevé qu'en France
- Un obstacle pour la micro-cogé : interdiction d'exporter de l'électricité sur le réseau -> nécessité d'intégrer dans les systèmes, une capacité de suivi de charge




Le Japon compte aujourd'hui 4,5 GW de puissance de cogénération installée, et le plan énergie du gouvernement prévoit 8 GW en 2020 et 11 GW en 2030



# Une feuille de route structurée et soutenue par l'Etat japonais (1/2)





 Un ensemble de programmes de R&D et Démonstration contigus et cohérents, impliquant l'Etat, les gaziers et les fabricants pour aboutir à une commercialisation séquencée des différentes technologies de microcogénération Une feuille de route structurée et soutenue par l'Etat japonais (2/2)

- Introduction progressive de technologies de plus en plus performantes (rdt élec ↗), générant donc de plus en plus d'économies d'énergie primaire et de CO2 associées
- Une dimimution progressive du ratio Chaleur / Electricité, qui va dans le sens de l'évolution des besoins des logements -> augmentation de la qté d'électricité produite -> meilleure rentabilité

| , l       | 2.8                | 1.3                | 0.9  |
|-----------|--------------------|--------------------|------|
|           | OWILL<br>s engine) | ENE-FARM<br>(PEFC) | SOFC |
| Gain Ep*  | 21%                | 32%                | 35%  |
| Gain CO2* | 32%                | 45%                | 50%  |

35%

45%

22.5%

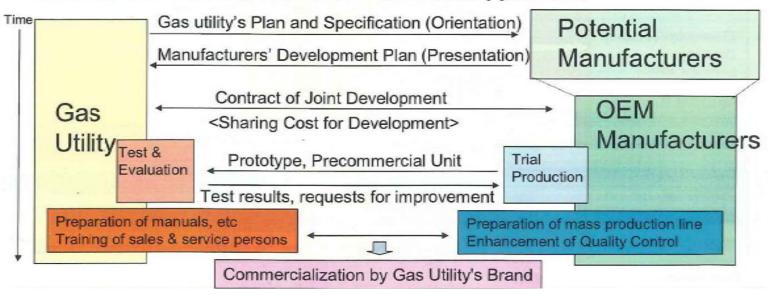
63%

GDF SVCZ

45%

\* Maison japonaise type, gain / ch BT et l'électricité du réseau

- Des spécifications établies en partenariats entre les gaziers et les fabricants, aboutissant à un design unique pour le marché japonais :
  - ✓ Deux modules juxtaposés : bloc générateur micro-cogé d'un côté et ballon + bruleur aux de l'autre
  - ✓ Installation 100% extérieure
  - $\checkmark$  [0,7 1 kWe] / [0,6 2,8 kWth]



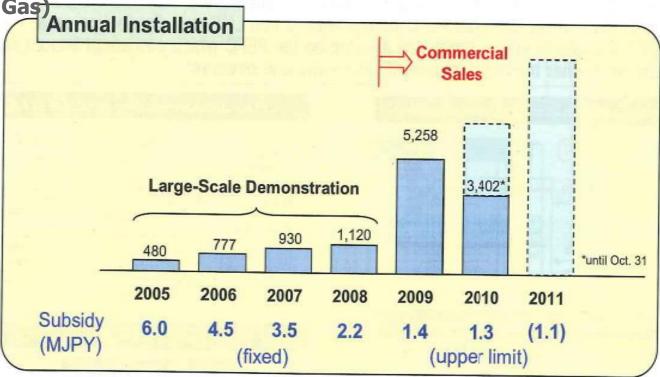

#### L'implication des gaziers et de l'Etat



L'implication des gaziers couvre tous les domaines de la chaîne : le développement produits, la promotion, la commercialisation, l'installation et la maintenance

#### Process of Commercialization of New Gas Appliances




#### Aides à la commercialisation :

- Les subventions de l'Etat au client final pour le système ENEFARM: la moitié du surcoût entre le système pile (PEMFC + Ballon/brûleur aux) et une chaudière à condensation avec un plafond décroissant chaque année : i.e. en 2010, 12000 € /système -> coût résiduel de 14.000 euros fourni posé
- > Tarifs préférentiels pour les acquéreurs d'ENEFARM (TG ~ 20% de rabais sur le coût du kWh gaz)

# Les échéances commerciales et résultats au Son Japon

• ECOWILL: micro-cogénération à moteur à combustion interne de 1kWe système largement diffusé, avec plus de 100.000 unités vendues depuis 2002 (60 000 par Osaka Gaş)

introduit
commercialement
depuis 2009 ->
désormais dans la
phase de
déploiement à
grande échelle



 SOFC: encore au stade de démonstration, une commercialisation avec au moins 5 ans de décalage par rapport aux PEFC est à prévoir.
 Toutefois, ENEOS CELLTEC et JX Nippon Oil&Energy annoncent une commercialisation d'un produit en 2011.



### **ACTEURS ET PRODUITS**



#### Trois produits pour la micro-cogénération trois ratio Electricité/Chaleur différents

- Moteur à combustion interne : ECOWILL 1kWe
  - E/C = 0.36
  - Rendement électrique 22,5%, Rendement global 85%
- •Pile à combustible basse-température PEMFC : ENE-FARM 700 à 1000W
  - E/C = 0.76
  - Rendement électrique 39%, Rendement global 90%
- Pile à combustible haute-température SOFC (700W)
  - $\cdot$  E/C = 1,13
  - Rendement électrique 45%, Rendement global 85%









# ENE-FARM: LA MICRO-COGÉNÉRATION PAR PILE À COMBUSTIBLE BASSE-TEMPERATURE

**UNE RÉALITÉ COMMERCIALE AU JAPON DEPUIS 2009** 



# ■ ENE-FARM : l'écogénérateur à pile à combustible japonais





# Les piles à combustible résidentielles : une réalité commerciale unique au monde

#### Des performances inégalées sur des systèmes commerciaux :

- rendement électrique de 35 à 39% (sur PCI du gaz naturel)
- rendement global de 85 à 94% (sur PCI du gaz naturel)
- <u>modulation de la puissance électrique</u> de 30 à 100% de la puissance nominale
- suivi de la charge électrique du logement (1 à 2 W/s)
- durée de vie actuelle de 40 000h soit 10 ans de fonctionnement
- <u>tenue aux cycles de marche/arrêt</u>: > 4 000 cycles
- Temps de démarrage à froid 1,5h (immédiat à chaud)
- maintenance annuelle : filtre gaz (désulfuration) (sauf TOSHIBA)
- · maintenance bi-annuelle : cartouche filtration eau et air

#### Une commercialisation depuis mi-2009

- <u>8 660 systèmes installés au 31/10/2010</u>, et 12 000 prévus à mi-2011.
- Système vendu à environ 25 000€ au client final par le gazier
  - Le client bénéficie d'une aide de l'état de 10 000€
  - Le coût du système serait d'environ 11 000€ pour le gazier
  - Le gazier associe la vente du système à un tarif spécial du gaz (-25%)

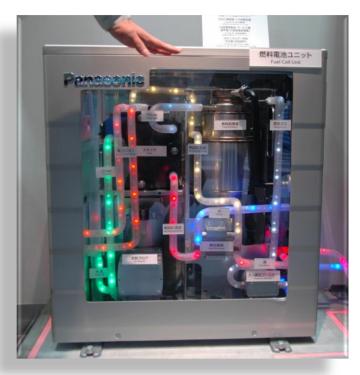


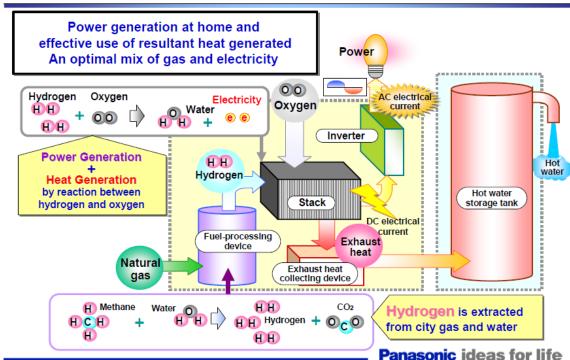
## ■ ENE-FARM : une avance du Japon considérable sur les autres acteurs

#### Japon: 12 000 unités installées depuis 2005, dont :

- 3307 unités installées entre 2005 et 2008 en démonstration sur sites
- 8660 unités vendues depuis mai 2009 en tant que produit commercial

### Europe : une centaine d'unités installées à ce jour, en phase de démonstration


• Projet CALLUX en Allemagne : 109 unités depuis juillet 2008


• CFCL: environ 50 unités vendues à des énergéticiens pour tests labo.

|              | Pays      | Type<br>Pile | Rend.<br>Elec. | P élec (W) | Unités<br>installées | Durée vie<br>pile |
|--------------|-----------|--------------|----------------|------------|----------------------|-------------------|
| PANASONIC    | Japon     | PEMFC        | 39%            | 1000       | >4000                | 10 ans            |
| TOSHIBA      | Japon     | PEMFC        | 37%            | 700        | >4000                | 10 ans            |
| BAXI INNOTEC | Allemagne | PEMFC        | 32%            | 1000       | >60                  | 2 ans?            |
| KYOCERA      | Japon     | SOFC         | 45%            | 750        | >200                 | 3 à 5 ans         |
| CFCL         | Australie | SOFC         | 60%            | 1500       | <10                  | 1 à 2 ans         |
| HEXIS        | Suisse    | SOFC         | 30%            | 1000       | >50                  | 1 à 2 ans         |

#### ■ ENE-FARM de PANASONIC







#### GDF SVCZ

### ENE-FARM de PANASONIC : le système à pile commercial japonais le plus performant à ce jour

#### Des performances inégalées sur un système commercial :

- rendement électrique de 39% (sur PCI du gaz naturel)
- rendement global atteignant 94% (sur PCI du gaz naturel)
- modulation de la puissance électrique de 300W à 1000W
- suivi de la charge électrique du logement (1 à 2 W/s)
- durée de vie actuelle de 40 000h soit 10 ans de fonctionnement
- maintenance annuelle : filtre gaz (désulfuration)
- maintenance bi-annuelle : cartouche filtration eau et air

#### Capacité de production :

- environ 3000 systèmes / an à ce jour.
- doublement de la capacité de production prévu en 2011.

#### · Un projet stratégique majeur au sein d'un groupe mondial

- PANASONIC Home Appliance emploie aujourd'hui 27 000 personnes dans le monde, au sein d'un groupe d'environ 300 000 personnes.
- Le projet ENE-FARM est suivi directement par le président de PANASONIC
   M. Ohtsubo



#### **ENE-FARM de TOSHIBA**



|                       | Item                     | Specification     |
|-----------------------|--------------------------|-------------------|
| Fuel Cell Unit        | Power Range              | 700-250W          |
|                       | Electric Efficiency      | >35% (LHV)        |
|                       | Overall Efficiency       | >80% (LHV)        |
|                       | Weight                   | 104kg             |
|                       | Dimensions               | W890×H895×D300mm  |
|                       | Noise                    | <38dB             |
|                       | Durability               | 80,000h           |
| Heat Recovery<br>Unit | Hot Water<br>Temparature | 60 degC           |
|                       | Tank Capacity            | 200L              |
|                       | Water Heater Capacity    | 41.9kW            |
|                       | Functions                | Hot Water Supply. |
|                       |                          | Floor Heating     |
|                       | Weight                   | 105kg (Dry)       |
|                       | Dimensions               | W750×H1900×D440mm |



#### **ENE-FARM de ENEOS CELLTECH**



|                        | Power output            | 750W                        |  |
|------------------------|-------------------------|-----------------------------|--|
|                        | Efficiency              | 35%( <b>LHV</b> )           |  |
| Basic Performance      | Heat recover efficiency | 50%(LHV)                    |  |
|                        | Operation               | Full auto learning function |  |
| Generation Unit        | Size                    | W 900×H 900×D 350           |  |
|                        | Fuel                    | LPG                         |  |
| Hot-water storage unit | Capacity of tank        | 200L                        |  |
|                        | Size                    | W 750×H 1,900×D 440         |  |

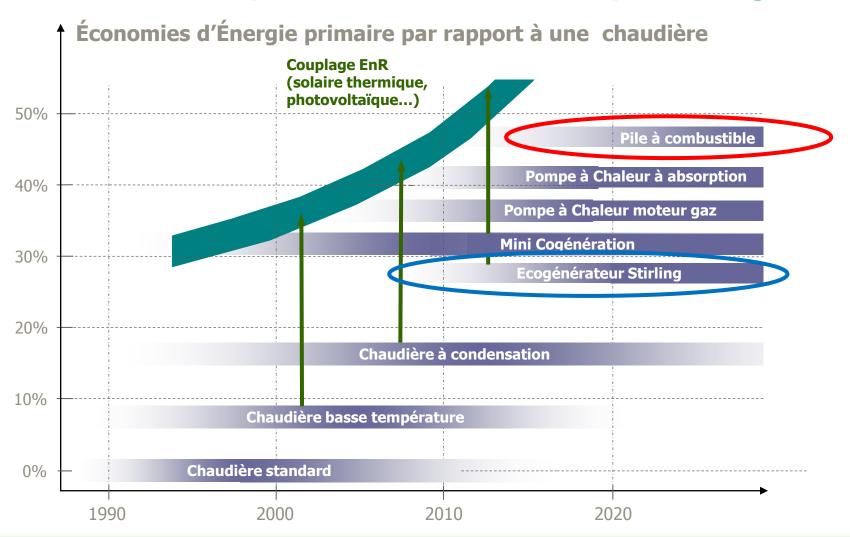
Une ENE-FARM fonctionnant au GPL



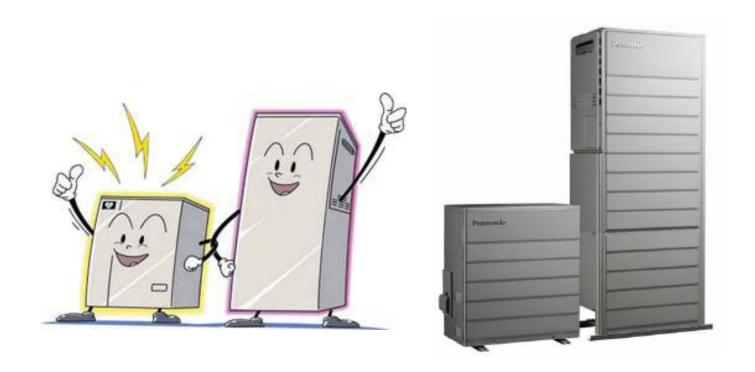
# PERSPECTIVES EN EUROPE ET EN FRANCE



# Le marché européen : opportunité pour les fabricants japonais


- La problématique pour les ENE-FARM : baisse des coûts
- Objectif: prix installé divisé par un facteur 2 à 4 pour un retour sur investissement inférieur à 10 ans (-/- à une chaudière à condensation)
- Une baisse des coûts de production d'un facteur deux est atteignable par une augmentation des volumes de production.
- L'Europe représente le marché le plus important à ce jour pour la microcogénération, avec un marché des chaudières de plus de 5M d'unités vendues par an
- Des pays tels que l'Allemagne, les Pays-Bas et le Royaume-Uni sont considérés comme les plus prometteurs à court-terme pour la microcogénération, notamment grâce aux tarifs élec et gaz, aux besoins thermiques des habitations, et au contenu CO2 de la production d'électricité (principalement à base de charbon et gaz)
- Les constructeurs d'ENE-FARM, et leurs partenaires gaziers, ont tout intérêt à s'attaquer au marché européen pour accélérer la baisse des coûts.




- La France : un marché plus difficile pour la micro-cogénération mais porté par la Réglementation Thermique
- La différence faible entre les prix du gaz et de l'électricité ne favorise que peu la micro-cogénération, sans être complètement défavorable.
- Les systèmes pile à combustible permettent de limiter considérablement la consommation d'énergie primaire, et atteindre un futur label Energie Positive
- La consommation en énergie primaire du système global (enveloppe + ventilation + système de chauffage et d'ECS) est l'indicateur retenu dans la RT 2012.
- Le gain sur les émissions de CO<sub>2</sub> en France est le même que partout en Europe, si l'on considère le contenu CO<sub>2</sub> marginal de l'électricité et non le contenu moyen ou saisonnier.
  - études CRIGEN sur le contenu CO2 de l'électricité et la note RTE/ADEME de 2007 sur le contenu CO2 marginal de l'électricité



### L'écogénérateur : la vision actuelle de GDF SUEZ Une étape dans l'évolution des produits gaz







### Merci pour votre attention!