Etude de nouveaux COmposés pour la REfrigération MAGnétique COREMAG PR09-3.1.1-2 (2009-2011)

Equipe 1: V. Paul-Boncour*, M. Phejar, L. Bessais

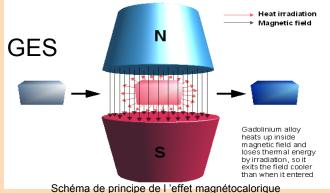
Chimie Métallurgique des Terres Rares, ICMPE, CNRS-Univ. Paris XII, 2-8 rue Henri Dunant, 94320 Thiais Cedex, France

Equipe 2: O. Isnard, C. Colin

Institut Néel, CNRS et université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France

Equipe 3: <u>T. Mazet</u>, P. Lemoine, A. Vernière et B. Malaman: Institut Jean Lamour, Département P2M, Nancy Université, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France

* Responsable scientifique

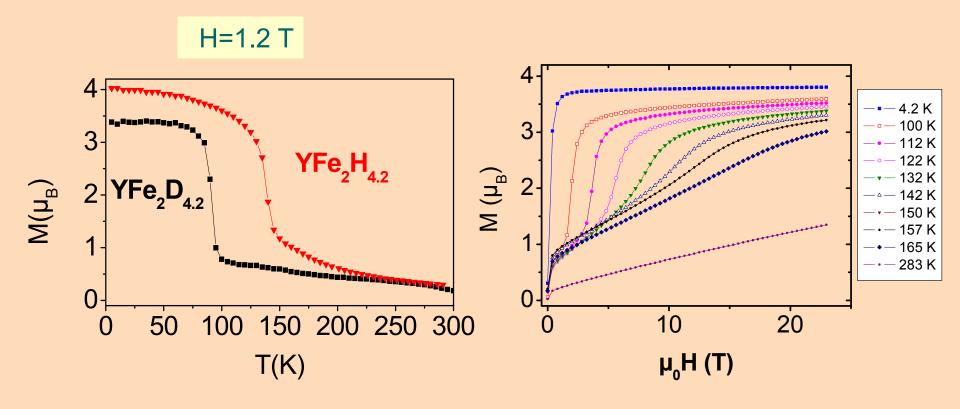


Programme Interdisciplinaire Energie

Matériaux pour la réfrigération magnétique

- Les systèmes de réfrigération classiques (réfrigérateurs, climatiseurs)
- Sont basés sur la compression/détente de gaz fluorés (CFC, HFC)
- Problème de réchauffement climatique car se sont de gaz à effet de serre (GES)
- Adoption de protocoles (Montréal, Kyoto) limitant l'utilisation de ces GES
- Avantages de la réfrigération magnétique
- Une alternative écologique: production de froid sans GES
- Silencieux car pas d'utilisation de compresseur
- Meilleur rendement énergétique: +20 à 30 %

Basé sur l'Effet MagnétoCalorique (EMC)

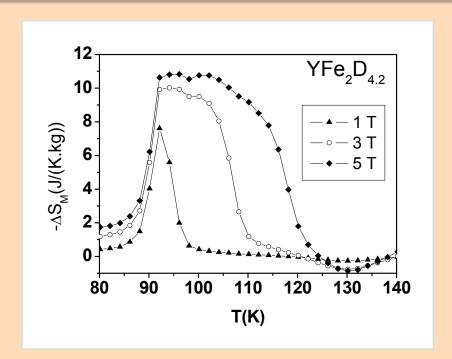

Sous l'effet d'un champ magnétique externe les matériaux magnétiques dégagent de la chaleur et en absorbent quand on supprime le champ

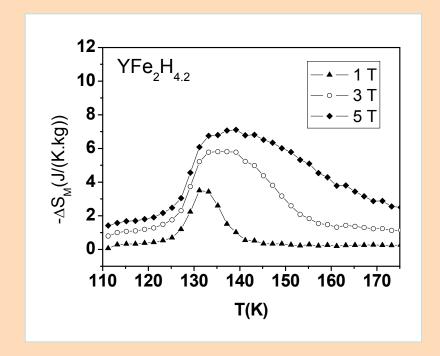
Matériaux étudiés

$$\rightarrow Y_{1-y}R_yFe_2(H,D)_{4.2}$$

 $ightharpoonup Y_{1-y}R_yFe_2(H,D)_{4.2}$ $ightharpoonup Dérivés de Gd_6Mn_{23}$

Propriétés magnétiques de YFe₂(H,D)_{4,2}

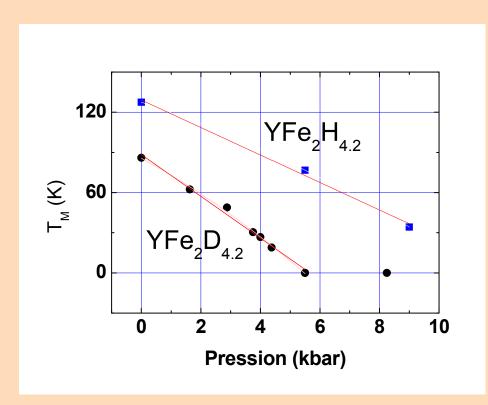


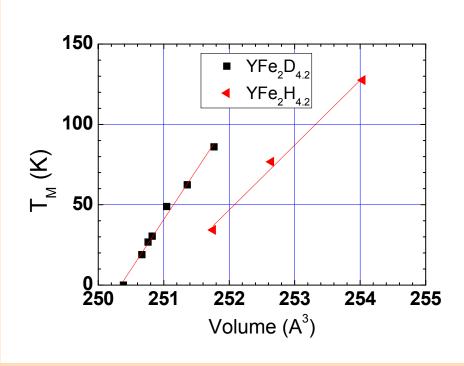

- □ Effet isotopique géant sur la température de transition (ΔT=47 K)
- Comportement métamagnétique des électrons itinérants

Existence d'un EMC?

Paul-Boncour et al,PRB 2005

YFe₂(H,D)_{4.2} Variation d'entropie magnétique

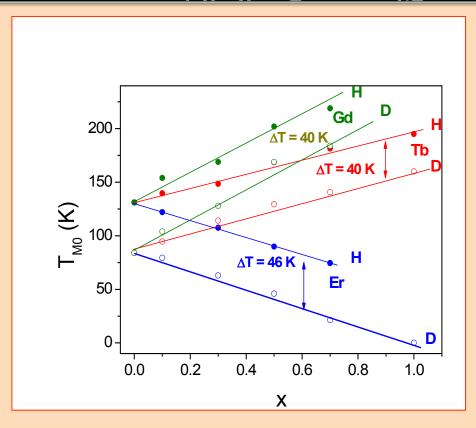

- \square Changement d'entropie magnétique à T_M (FM-AFM)
- □ La variation d'entropie magnétique est plus grande pour le deutérure et proche de celle de Gd (-10.3 J.K.kg)⁻¹


	T _{M0} (K)	-∆S _M [J.(K.kg) ⁻¹]	RCP (J.kg ⁻¹)
YFe ₂ D _{4.2}	84	10.8	292
YFe ₂ H _{4.2}	131	7.1	263

 $(\Delta \mu_0 H = 5T)$ V. Paul-Boncour,
T. Mazet,

JAP 2009

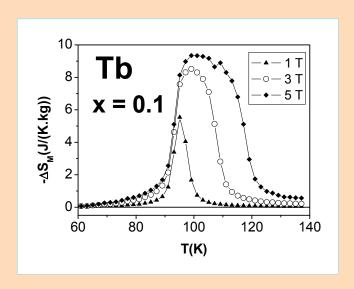
Mesures magnétiques sous pression

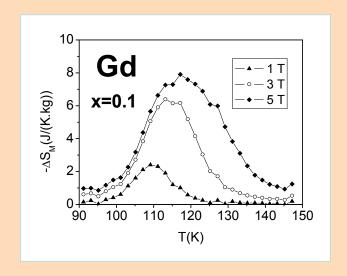


Evolution de T_M (à 0.03 T) en fonction de la pression et du volume

Influence de la substitution de Y par une terre rare sur T_M?

$Y_{1-x}R_xFe_2(H,D)_{4.2}R = Er, Tb, Gd$


On peut modifier

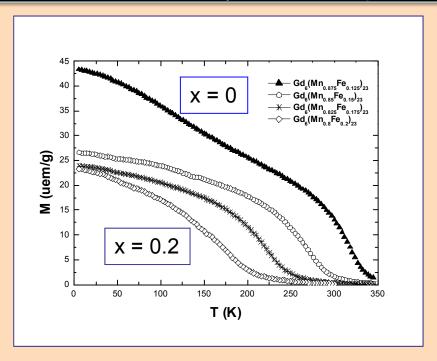

T_M en substituant

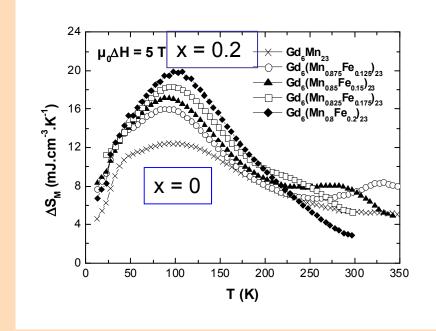
Y par R

- La température de transition dépend de l'élément R et de l'effet isotopique H :
 - T augmente pour R=Gd, Tb et diminue avec Er
 - \square T hydrure > T deutérure (\triangle T = 40 to 46 K)

$Y_{1-x}R_xFe_2D_{4.2}$ R=Tb, Gd

- \square - $\triangle S_M$ et RCP diminuent avec le taux de Tb (x=0.1 to 0.5)
- \square - $\triangle S_M(T)$ est plus symétrique avec le Gd (anisotropie de la terre rare)

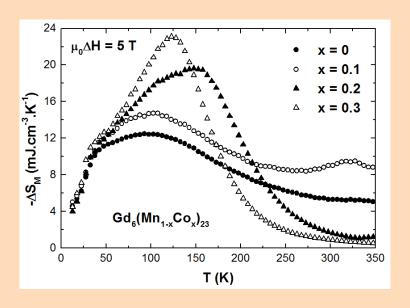

	T _{M0} (K)	-∆S _M [J.(K.kg) ⁻¹]	RCP (J.kg ⁻¹)
$Y_{0.9}Tb_{0.1}Fe_2D_{4.2}$	94	9.3	224
$Y_{0.5}Tb_{0.5}Fe_2D_{4.2}$	130	5.1	61
$Y_{0.9}Gd_{0.1}Fe_2D_{4.2}$	104	7.9	190

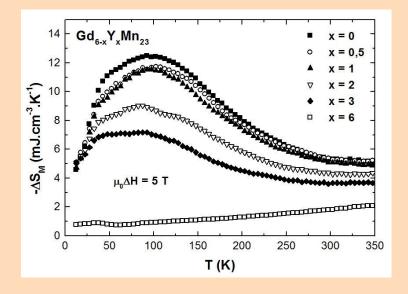

$Y_{1-x}R_xFe_2D_{4,2}$ R=Er, Tb

Composé	T _R (K)	T _{MO} (K)	T _{N (AFM)} (K)	-∆S _M [J.(K.kg) ⁻¹]
YFe ₂ D _{4.2}		84	131	10.8
$Y_{0.5}Er_{0.3}Fe_2D_{4.2}$	34	63	123	9.9
$Y_{0.5}Er_{0.5}Fe_2D_{4.2}$	44	46	104	5.1
$Y_{0.9}Tb_{0.1}Fe_2D_{4.2}$	88	94	147	9.3
$Y_{0.5}Tb_{0.5}Fe_2D_{4.2}$	210	130	160	5.1

Quand la température de mise en ordre de R est proche ou supérieure à T_{M0} , la variation d'entropie magnétique est très réduite à cause du couplage antiparallèle Fe-R.

Composés $Gd_6(Mn_{1-x}Fe_x)_{23}$ (x \(\text{\leq} 0,2)

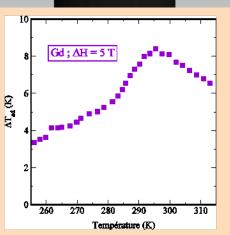



Variation thermique de l'aimantation : T_C ajustable entre ~ 175 K et 480 K

Variation thermique de l'entropie magnétique

Effet magnétocalorique modéré mais s'étendant sur un large domaine de température → capacité de réfrigération q élevée, comparable à celle de Gd ou de Gd₅Si₂Ge₂

Composés $Gd_6(Mn_{1-x}Co_x)_{23}$ (x \leq 0,3)


Influence de la substitution de Mn par Co sur ΔS_M

Influence de la substitution de Gd par Y sur ΔS_M

La température de transition et l'amplitude de l'EMC peuvent être ajustées par le jeu des substitutions

Appareil de mesures directes

- -Principe : extraction rapide de l'échantillon de la zone de champ dans des conditions quasi-adiabatiques
 - -Plateforme hôte : PPMS-9T (Quantum Design)
 - -Déplacement de l'échantillon par vérin pneumatique (60 cm/s)
 - Mesure de la température par CERNOX®
 - Langage : Labview

-Recrutement d'un Al (CDD de 6 mois financé par le PIE du CNRS) pour l'automatisation et l'interfaçage

Mesure de ΔT_{ad} du Gd

Conclusions et perspectives

Les composés Y_{1-y}R_yFe₂(H,D)_{4,2} et Gd₆(Mn_{1-x}M_x)₂₃ présentent des variations d'entropie magnétique intéressantes pour des applications dans le domaine du froid magnétique.

- Y_{1-y}R_yFe₂(H,D)_{4.2} (R= Gd, Tb) l'effet magnétocalorique est important mais peu étendu en température. Influence d'autres éléments substitutés (R=Pr, Nd)
- Gd₆(Mn_{1-x}M_x)₂₃ (M=Fe, Co) la variation d'entropie est modérée mais s'étend sur un très grand domaine de température. Influence de la substitution de Gd par Y, R et de l'insertion d'hydrogène
- Dans les deux cas, les températures de transitions magnétiques peuvent être ajustées par la composition chimique.
- Perspectives sur de nouveaux composés; Mise en forme des matériaux
- Mesures directes: Finaliser la réalisation du système.

Production scientifique

4 Articles dans des journaux à comité de lecture

Study of the multipeak deuterium thermodesorption in YFe₂D_x (1.3 \le x \le 4.2) by DSC, TD and in situ neutron diffraction

T. Leblond, V. Paul-Boncour, F. Cuevas, O. Isnard, et J.F. Fernandez, International Journal of Hydrogen Energy, **34**(5) (2009) 2278-2287.

Investigation of compounds for magnetocaloric applications: $YFe_2H_{4.2}$, $YFe_2D_{4.2}$ and $Y_{0.5}Tb_{0.5}Fe_2D_{4.2}$.

V. Paul-Boncour et T. Mazet,

J. Appl. Phys., 105 (2009) 013914.

Magnetic properties of $Y_{0.7}Er_{0.3}Fe_2(H,D)_{4.2}$ compounds under continuous magnetic field up to 35 tesla

M. Guillot, V. Paul-Boncour, et T. Leblond,

J. Appl. Phys., 107 (2010) 09E144.

Magnetocaloric properties of $Gd_6(Mn_{1-x}Fe_x)_{23}$ alloys (x \leq 0.2)

P. Lemoine, V. Ban, A. Verniere, T. Mazet, et B. Malaman, Solid State Comm., **150**(33-34) (2010) 1556-1559.

3 Articles publiés dans des actes de colloques

Magnetocaloric properties of $Y_{1-x}R_xFe_2(H,D)_{4.2}$ compounds (R= Gd, Tb, Er) V. Paul-Boncour, T. Mazet, M. Phejar, O. Isnard and C. Colin Proceedings de <u>Thermag IV (Baotou, Chine)</u>, 2010

Magnetocaloric properties of some derivatives of Gd_6Mn_{23} P. Lemoine, V. Ban, A. Vernière, T. Mazet, V. Paul-Boncour and B. Malaman Proceedings de <u>Thermag IV (Baotou, Chine) 2010</u>

Propriétés magnétocaloriques des composés $Y_{1-x}R_xFe_2(H,D)_{4.2}$ (R= Gd, Tb, Er), V. Paul-Boncour, M. Phejar, T. Mazet, O. Isnard and C. Colin Proceedings de Matériaux 2010, 2010

Thèses

-M. Phejar, CMTR, Thiais

Thèse de doctorat de l'université de Paris Est Créteil soutenue le 3 decembre 2012

-P. Lemoine: Thèse en cours, IJL, Nancy

Conférences

11 communications:

3 conferences invitées, 3 communication orales, 5 affiches

Conferences invitées:

Giant isotope effect on the metamagnetic properties of $Y_{1-x}R_xFe_2(H,D)_{4.2}$ (R = Er, Tb) compounds

M. Phejar et V. Paul-Boncour

1st Joint BER II and BESSY II Users' Meeting, 12-13 novembre 2009, Adlershof, Germany

Effect of interstitial elements and/or pressure on the magnetic properties of some iron rich intermetallic compounds

O. Isnard, Z. Arnold, C.V. Colin, V. Paul-Boncour, M. Guillot, J. Kamarád MH2010 (Moscou, Russie), 19-23 juillet 2010:

Propriétés magnétocaloriques des composés Y_{1-x}R_xFe₂(H,D)_{4.2} (R= Gd, Tb, Er)

V. Paul-Boncour, M. Phejar, T. Mazet, O. Isnard, C. Colin Matériaux 2010 (Nantes), 18-22 octobre 2010