Production d'hydrogène par cycles thermochimiques solaires à base d'oxydes mixtes PE3.1-1 (CYCLHYSOL)

PROMES - Laboratoire PROcédés, Matériaux et Energie Solaire (UPR 8521) S. Abanades, A. Cordier, G. Peraudeau, E. Beche, G. Flamant

IEM - Institut Européen des Membranes (UMR 5635) A. Ayral, A. Julbe, E. Gérardin

PROMES

Programme Interdisciplinaire Energie du CNRS

- Caractéristiques similaires pour la réduction de Fe₃O₄ et CeO₂: T_{red}=1600-2000°C (fusion), mais sublimation partielle et broyage nécessaire
- Bonne réactivité de l'espèce réduite avec H₂O (réaction totale pour Ce₂O₃)

Objectifs:

- \searrow T_{red} (<1500°C) par la présence de dopant
- Synthèse de composés mixtes réactifs (M_xCe_{1-x}O₂, M_xFe_{3-x}O₄)
- Microstructure limitant le frittage → stabilisation sur support céramique (imprégnation dans des monolithes poreux)

Objectifs des synthèses :

- Synthèse de nanoparticules (favoriser réduction de surface)
- Synthèse permettant le dopage de la cérine pour augmenter les lacunes $M_xCe_{1-x}O_{2-\delta}$ (\nearrow diffusion volumique de O^{2-})
- Synthèse permettant l'imprégnation ou l'enrobage de support (voie humide)

\Rightarrow Méthodes de synthèse par chimie douce :

PROMES : Co-précipitation des hydroxydes, complexation des citrates, Pechini EG, Pechini HMTA, voie hydrothermale

IEM : Sol gel à partir de sels métalliques ou Pechini EG

I. Influence de la méthode de synthèse

Morphologie des poudres

 Influence de la nature du dopant

Elément cationique M^{y+} de moindre ou de même valence que Ce⁴⁺ III. Influence de la quantité de dopant

0 à 50% at.

Comparaison des méthodes de synthèse à partir des caractérisations de poudres (DRX, MEB-FEG)

Méthode	Rendement (%)	Taille (nm)
Péchini EG	92	38
Péchini HMTA	87	19
Hydroxyde	64	23
Citrate	60	33

Pechini EG

Images MEB-FEG (IEM)

Dopage de CeO₂ par : Al, Mn, Fe, Co, Cu, Zn, Zr, Zr3Y, Zr8Y (25% at.)

М	Valence(s) de M	Proportion cationique de M (%)
Zn	2+	25
Mn	$2^+, 3^+, 4^+$	25
Fe	2+, 3+	25
Al	3+	25
Cu	2+	12.5-25-37.5-50
Co	2+, 3+	12.5-25-37.5-50
Zr	4+	12.5-25-37.5-50
Zr3Y	4+	25
Zr8Y	4+	25
Cérine pure	4+	0

Objectif : créer des défauts

- → Diminuer le paramètre de maille (M⁴⁺)
- \rightarrow Solution solide avec M³⁺, M²⁺ pour créer des lacunes

Réduction (ATG) des poudres d'oxydes mixtes

 \rightarrow Pertes de masse dans le cas de Cu, Co, Zr, Zr3Y, Zr8Y

 \rightarrow Formation de Ce³⁺ dans le cas de Zr, Zr3Y, Zr8Y

Caractérisation Raman (IEM) :

25Zr : Présence de 2 épaulements caractéristiques de Ce(III)

Réduction et hydrolyse de Zr_xCe_{1-x}O₂ (PROMES)

Zr permet de diminuer la température de réduction de Ce⁴⁺
Taux de réduction Z (jusqu'à 70 %) quand Zr Z

Hydrolyse de $Zr_{0.5}Ce_{0.5}O_{2-\delta}$: production H₂ \checkmark avec T

Augmentation de la surface spécifique (mesures IEM)

Composition (calcination à 800°C)	S _{BET} (m²/g)
0 Zr	14
50 Zr	23
50 Zr3Y	26
50 Zr3La	31

Le dopage de CeO₂ par un autre métal (Y, La,...) augmente la surface réactive du matériau

Imprégnation sur support céramique (PROMES, IEM)

Tests sur mousses SiC ou supports en cordiérite type nid d'abeille

Objectifs:

- Augmenter les transferts solide-gaz
- Optimiser la quantité de dépôt sur les parois des mousses
- Améliorer l'adhérence des sols sur les supports (four micro-onde à l'IEM)

Conclusion

- Synthèse de poudres dont la taille des cristallites est de l'ordre de 20 nm par différentes méthodes
- Etude de 9 dopants différents : Al, Mn, Fe, Co, Cu, Zn, Zr, Zr3Y, Zr8Y
- Réduction de Ce(IV) en Ce(III) sous N₂ dans le domaine 900°C-1500°C dans le cas de Zr, Zr3Y, Zr8Y
- Réactivité avec H₂O démontrée à T < 900°C

Travaux en cours - perspectives

• Etude de l'influence des méthodes de synthèse (précipitation des hydroxydes, voie hydrothermale) sur le taux de réduction

- Etude en cours sur des cérines dopées avec Cr, Si, Ta, V
- Caractérisations en TG-MS avec vapeur d'eau en 2010

Cycles ferrites

Temps (en min)

Synthèse de Ni-ferrites (Ni_xFe_{3-x}O₄) et étude de réactivité (PROMES)

Dopage par : AI, Mn, Fe, Co, Cu, Zn, Zr, Zr3Y, Zr8Y (25% at.)

	М	Valence(s) de M	Proportion cationique de M (%)
Máthada	Zn	2+	25
Wellioue	Mn	$2^+, 3^+, 4^+$	25
Pechini	Fe	2+, 3+	25
	Al	3+	25
	Cu	2+	12.5-25-37.5-50
	Co	2+, 3+	12.5-25-37.5-50
	Zr	4+	12.5-25-37.5-50
	Zr3Y	4+	25
	Zr8Y	4+	25
	Cérine pure	4+	0

DRX des poudres post-synthèse (calcinées sous air à 800°C)

Objectif : créer des défauts

- \rightarrow Diminuer le paramètre de maille (M⁴⁺)
- → Solution solide avec M³⁺, M²⁺ pour créer des lacunes

> valence du cation ⇒ ∧ taille cristallites

ATG des poudres à 1400°C sous air statique

 \rightarrow Pertes de masse dans le cas de Cu et Co

→ Formation de solutions solides dans le cas de Zr, Zr3Y, Zr8Y (\paramètre de maille car décalage des pics DRX vers les grands angles)

ATG des poudres à 1400°C sous N₂

- \rightarrow Pertes de masse dans le cas de Cu, Co, Zr, Zr3Y, Zr8Y
- → Formation de Ce³⁺ dans le cas de Zr, Zr3Y, Zr8Y

Caractérisation Raman des oxydes (IEM) :

25Cu et 25Co

→ Bande caractéristique de Ce(IV) → Présence de Cu₂O et Co₃O₄ → Pas de réactivité avec H₂O

25Zr

Présence de 2 épaulements caractéristiques de Ce(III)

Réduction (ATG) de Zr_xCe_{1-x}O₂ sous N₂ (PROMES)

Zr permet de diminuer la température de réduction de Ce⁴⁺

↗ Taux de réduction jusqu'à 70 % quand Zr ↗

Hydrolyse de $Zr_{0.5}Ce_{0.5}O_{2-\delta}$ (PROMES)

Limitation : (exemple ATG)

Réaction uniquement en surface Mauvaises conditions d'échange solide-gaz

Dispositif d'hydrolyse :

Coprécipitation des hydroxydes

Coprécipitation des hydroxydes

Agglomérats:

•taille entre 20 et 100µm

•composés de grains primaires, compacts et difficilement cassables

Grains primaires :

•taille d'environ 5µm

•denses, forme ronde et surface rugueuse

Sol gel EG

- Inconvénients de la méthode
 - Fours sous hotte
 - Acide nitrique

- Avantages de la méthode
 - Petite taille de particules
 - Homogénéité
 - Particules monodisperses
 - Particules monocristallines

Agglomérats:

•taille entre 10 et 150 µm

•morphologie = « coton »

Grains primaires :

•taille < 500 nm

•forme ronde ; non frittés

<u>Péchini HMTA</u>

- Inconvénients de la méthode
 - Fours sous hotte
 - Durée de synthèse importante

- Avantages de la méthode
 - Petite taille de particules
 - Homogénéité
 - Particules monodisperses
 - Particules monocristallines

<u>Péchini HMTA</u>

Agglomérats:

- taille entre 10 et 80 µm
- « éponges » à porosité ouverte : épaisseur parois < 1µm
- aisément friables

Grains primaires :

• Taille < 250 nm ; distribution fine

Coprécipitation + PEG 400

2θ

Procédé Péchini

- **Ni**(NO₃)₂.6H₂O + 2 Fe(NO₃)₃.9H₂O + Acide citrique $\Delta (80^{\circ}C)$ seffet chélate (sol marron)
- Ajout d'éthylène Glycol Δ (200°C) \rightarrow polyesterification (gel marron foncé)
- Calcination à 550°C pdt 2H pour éliminer les composés organiques (poudre noir après broyage)

Test de la Réduction

Schéma expérimental de test de l'étape de réduction dans un four électrique

Mesure d'oxygène lors de la réduction de NiFe₂O₄-PEG à 1400°C

Test de l'Hydrolyse

Schéma expérimental de test de l'étape d'hydrolyse dans un four électrique

Mesure d'H₂ lors de l'hydrolyse de NiFe₂O₄-PEG à 1000°C