NoMaStock PR08-2.5-3 : Nouveaux Matériaux hydrures pour un stockage optimum de l'hydrogène.

Responsable scientifique : Jean-Louis BOBET, ICMCB-CNRS, 33608 Pessac cedex

Aline ROUGIER Laboratoire de Réactivité de Chimie des Solides, UMR CNRS 6007, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex

Valérie PAUL-BONCOUR, Chimie Métallurgique des Terres Rares, Institut de Chimie et Matériaux de Paris Est - UMR 7182, <u>Institut des Sciences</u> <u>Chimiques Seine-Amont,</u> Bat F, 2-8, rue Henri Dunant, 94320 THIAIS

Salvatore MIRAGLIA, Institut Néel, Institut Neel, CNRS/UJF, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9

Etat de l'art (stockage H₂):

Hydrures métalliques = bonne capacité volumique et + sécuritaire. Ce qui existe : LaNi₅ \rightarrow 1,5% massique, 20°C

Mg \rightarrow 7,6% massique, 250°C

Notre objectif :

Développement de nouveaux matériaux à base d'alcalino-terreux (Mg et Ca) utilisables pour le stockage de l'hydrogène. 2 systèmes ternaires : TR – Ni – Mg et Mg - Ca – Ni ont été étudiés

Principaux résultats du PR

- 1 Pseudo phase de Laves avec du Magnésium
- 2 Nouvelles phases
 - riche en TR (i.e. TR₄NiMg)
 - riche en Mg (i.e. TRNiMg₈, Gd_xNi_vMg₈,...)
 - ternaires Ca-Ni-Mg
- **3 Conclusion et perspectives**

1- Pseudo phases de Laves avec du Magnésium Synthèse de RENi_{4-x}Al_xMg → possible pour x ≤ 1.2 Pour RE = La, Ce et Gd Influence « stérique » pour l'échange RE/Mg?

Composés avec e- 4f → échange RE/Mg Relaxation des contraintes → pas d'échange RE/Mg

Isotherme d'absorptiondesorption du composé YNi_{3.5}Al_{0.5}Mg à 275K

Absorption réversible de 1% massique à température ambiante
Ajustement de la pression d'équilibre en fonction du taux
d'aluminium (i.e. en fonction du paramètre de maille comme dans les composés AB₅)

- Propriétés magnétiques originales avec une « dilution » de l 'effet RKKY.

Propriétés magnétiques originales de ces composés

Dilution du Gd → d Gd-Gd / → Jcf \ → RKKY \ Mais...il existe une « dilution » minimale ...et la cristallinité joue aussi un rôle (cristallisé → amorphe)

- 1 Pseudo phase de Laves avec du Magnésium
- 2 Nouvelles phases
 - riches en TR (i.e. TR₄NiMg)
 - riches en Mg (i.e. TRNiMg₈, Gd_xNi_vMg₈,...)
 - ternaires Ca-Ni-Mg
- **3 Conclusion et perspectives**

COMPORTEMENT DU COMPOSE TR₄NiMg SOUS HYDROGENE

Diffractogramme du composé TR4NiMg avant et après hydruration

"bonus" : **AF verre de spin** en fonction du taux d'Al

COMPORTEMENT ELECTROCHIMIQUE DU COMPOSE Gd₄NiMg_{0,5}Al_{0,5}

Insertion d'1 hydrogène Processus non réversible

Les principaux résultats du PR

- 1 Pseudo phase de Laves avec du Magnésium
- 2 Nouvelles phases
 - riches en TR (i.e. TR₄NiMg)
 - riches en Mg (i.e. TRNiMg₈, Gd_xNi_vMg₈,...)
 - ternaires Ca-Ni-Mg
- **3 Conclusion et perspectives**

DETERMINATION STRUCTURALE DE LaCuMg₈ PAR DIFFRACTION SUR MONOCRISTAL

 La_2Mg_{17}

- Structure ordonnée: R(obs) = 15.8 %

-Affinement avec les positions atomiques de La_2Mg_{17}

LaCuMg₈

- Structure désordonnée R(obs) = 4.3%
- Taux d'occupation du cuivre
 - Cu1a (La1) (Occ : 8.1%)
 - Cu1b (La1) (Occ : 9.3%)
 - •Cu1 (Mg1) (Occ : 8.9%)
 - Cu2 (Mg2) (Occ : 36.6%)

→ (La_{1.74}Cu_{0.25})(Cu_{1.28}Mg_{15.73})

CYCLABILITE de Mg/MgH₂?

Mécanisme global simplifié :

 $2 \text{ LaCuMg}_8 + 18 \text{ H}_2 \rightarrow 2 \text{ LaH}_3 + 15 \text{ MgH}_2 + \text{MgCu}_2 \rightarrow 2 \text{ LaH}_{3-x} + 12 \text{ Mg} + 2 \text{ Mg}_2\text{Cu} + (15+x) \text{ H}_2$

Irréversible = Etape d'activation **Réversible (cyclage)**

Les principaux résultats du PR

- 1 Pseudo phase de Laves avec du Magnésium
- 2 Nouvelles phases
 - riches en TR (i.e. TR₄NiMg)
 - riches en Mg (i.e. TRNiMg₈, Gd_xNi_vMg₈,...)
 - ternaires Ca-Ni-Mg
- **3 Conclusion et perspectives**

Structure des polytypes de type Ca-Mg-Ni

Conclusions et perspectives

1 – Nombreux nouveaux composés

- $TR_4NiMg \rightarrow$ pas de déstabilisation possible!
- La₁₁Cu₉Mg₈₁ → Multiples substitutions possibles? Propriétés électrochimiques intéressantes?
- Gd_xNi_yMg₇₈ → Détermination structurale à affiner Propriétés physiques originales Substitutions, Electrochimie, autres?
- $Ca_{1-x}Mg_xNi_{2,6}$ → Amélioration des pptés cinétiques et substitutions

2 – Production scientifique

- 4 publications acceptées + 2 soumises
- 3 communications (1 invitée, 1 orale et 1 affiche)

Merci pour votre attention

Bonus

Propriétés magnétiques originales de ces composés

Dilution of Gd → no drastic change of the magnetic properties Only the maximum magnetization is affected

En résumé : LaNi₄Mg : non magnétique, présence de Ni libre CeNi₄Mg : Ms = 0.38 mB(Ce,Y)Ni₄Mg : (Ce,Y)Ni_{4-x}Al_xMg : \checkmark Ms

 $GdNi_2$:Tc = 75 K $Gd_{0.5}Mg_{0.5}Ni_2$:Tc = 77.6 K $Gd_{0.25}Y_{0.25}Mg_{0.5}Ni_2$:Tc = 36 K $Gd_{0.25}Y_{0.25}Mg_{0.5}Ni_{1.75}Al_{0.25}$:Tc = 15 K $Gd_{0.5}Mg_{0.5}Ni_{2(a):}$ Tc = 10 - 30 K

Composés de formulation TR₄NiMg

Évolution de la température de transition magnétique en fonction du taux d'aluminium

La température de Néel décroît linéairement avec le taux de Magnésium

TR₄NiMg : STRUCTURE CRISTALLINE

Découverte en 2008 par notre partenaire allemand [1]

[1] S. Tuncel, Ute Ch. Rodewald, B. Chevalier, R. Pottgen, Z. Naturfoschung, 62b (2007) 642

[2] S. Tuncel, J-G. Roquefère, C. Stan, J-L. Bobet, B. Chevalier, E. Gaudin, R-D. Hoffmann, U. Ch. Rodewald, R. Pöttgen, J. Solid State Chem., 182 (2009) 229

Composé La₁₁Cu₉Mg₈₁

ANALYSE MICROSONDE

- Obtention d'une phase pure
- Présence de quelques impuretés
 *Binaire Mg-Cu
 *Mg, Fe, O

 Quantification des impuretés impossible car phases très petites Composé Gd_xNi_vMg₇₈

 R_{moyen} = 1,59 Å Empillement aléatoire CFC : 4r = a√2 a = 4.5 Å

Diffractogramme du composé Gd_xNi_yMg₇₇

- Structure cubique (CFC) possible : **a** ≈ **4.5** Å (confirmé par le calcul)
- Présence d'une phase amorphe
- Forte intensité du pic 111 non expliquée
- se décompose lors de l hydruration
- pptés physiques très originales

Structure des polytypes de type Ca-Mg-Ni

✓ Ca préside à former des blocs « 1:5 »

✓ Mg préside à former des blocs « 2:4 »

Le composé (Ca_{0,55}Mg_{0,45})Ni_{2,6}

Intensité (u.a.) 1.11, 1.1,0.01,001,001,00,0 11,11 -1000 -3000 -5000 2θ (°), λ_(Cu)

(Ca_{0,55}Mg_{0,45})Ni_{2,6}

[J. Alloy. Compd. 478 (2009) L3-L11]

Analyses thermodynamique et cinétique de (Ca_{0,66}Mg_{0,33})Ni_{2,6}

Capacité de stockage ~ 1,75 % mass. de H₂ à T_{amb} (~ 20 % > LaNi₅)

- → performances éq à LaNi₅
- → matériau sans La
- \rightarrow cinétique et réversibilité à optimiser

Les principaux résultats du PR

- 1 Pseudo phase de Laves avec du Magnésium
- 2 Nouvelles phases
 - riche en TR (i.e. TR₄NiMg)
 - riche en Mg (i.e. TRNiMg₈, Gd_xNi_vMg₈,...)
 - ternaires Ca-Ni-Mg
- **3 Conclusion et perspectives**

