

Laboratoire des Science des Procédés et des Matériaux LSPM-CNRS UPR 3407 (ex. LIMHP) Université Paris 13

<u>Kamal BABA</u>¹, Mehrdad NIKRAVECH¹, Dominique VREL¹, Andréi KANAEV¹, Luc MUSEUR², Mohamed CHEHIMI³

1-LSPM, Laboratoire des Science des Procédés et des Matériaux, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
2-LPL, Laboratoire de physique des lasers UMR 7538, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
3-ITODYS, Universite Paris Didrot, 15, rue Jean Antoine de Baif, 75013 Paris France

Colloque PIE CNRS - Montpellier 2011

UNIVERSITÉ **PA**

- ZnO et le photovoltaïque
- Procédé Spray Plasma
- Caractéristiques des couches minces de ZnO.
- Influence des paramètres opératoires sur les dépôts.
- Conclusion

Fig.1. Structure de base d'une cellule photovoltaïque à base Si

Procédé Spray Plasma

Caractéristiques des couches minces de ZnO déposées par Spray plasma

Fig.3. XRD patterns of Al-ZnO prepared at various Plasma gas composition

Sample	Cristalyte size (nm)	Strain
(a)	33	0,005
(b)	100	0,006
(c)	14	0,002

Table.1. Cristalyte size and strain usingWilliamson Hall plot1 as fonction of plasmagas composition

 $\beta \cos \theta = k\lambda / T + 4 \epsilon \sin \theta$

(a) (Ar:O₂) = (200:10)mL/min (b) (Ar:O₂) = (200:0)mL/min (c) (Ar:O₂) = (100:0)mL/min

Caractéristiques optiques des couches

Fig. 4. Transmission spectra of the ZnO films for different plasma gaz composition C=0.1M; Substrate temperature =200°C; anealing temperature= 400°C

Fig.5. Photoluminescence of ZnO thin film deposited on aluminum substrate. Fluorescence spectroscopy performed in ultra vacuum (<10-9 mbar) and cryogenic temperature (11K). C=0.1M; (Ar:O2)=(200:50)mL/min; anealing temperature= 400°C

Table 2. Chemical composition of ZnO Suface layer by XPS

Element	Raie	Postion (eV)	LMH (eV)	at. %
Zn	Zn2p3	1021.7	1.86	24.72
C	C1s	285.0	1.53	35.40
Ο	O1s (ZnO)	530.6	1.61	26.46
	O1s (C=O)	532.2	1.50	9.99
	O1s (C-O)	533.2	1.62	3.44

Zn/O = 0.93

Influence du substrat sur les dépôts

Fig. 7. XRD patterns of Al-ZnO deposited on (a) aluminium substrate and (b) glass substrate C=0.1M, 3 *at* % Al; Substrate temperature =200°C; anealing temperature = 400°C

(a)

(b)

Fig.8 . AFM image of Al-ZnO films deposited on glass and Si substrate (a) Si substrate, (b) glass substrate C=0.1M, 3 wt% Al; Ar+CH4 plasma gas

Influence des gaz plasma sur les couches minces de Al-ZnO

(a)

(b)

Fig.9. AFM image of Al-ZnO films deposited on glass substrate C=0.1M; Substrate temperature =200°C; anealing temperature= 400°C; 150 W (a) (Ar:O2)=(200:10)mL/min (b) (Ar:O2)=(200:0)mL/min

Influence de la température du substrat et la concentration

Fig.10. XRD and cristalyt size ZnO thin film as fonction as (a) substrate temperature, (b) solution precursor concentration

Influence des la puissance plasma sur les couches minces de Al-ZnO

Fig.11 . XRD of Al-ZnO thin film deposited at plasma power of 150W and 400W. C=0.1M 3 at% Al; Ar+O2 plasma gas

(b)

(a)

Fig.12 . ASM image of Al-ZnO films deposited at (a) 150W and (b) 500W plasma power

Influence des la puissance plasma sur les couches minces de Al-ZnO

300W

500W

Fig.13. AFM image of Al-ZnO as function as plasma power. C=0.1M, 3 at% Al; glass substrate, Ar plasma gas

Conclusion

- Les couches minces de ZnO et Al-ZnO ont une structure de type hexagonal wurtzit
- L'orientation des couches peut être contrôlée par le contrôle de la température du substrat et la concentration
- Les images AFM et MEB montrent des couches rugueuse et fortement texturées (Rms = 5-50nm)
- Transmittance 80-90% dans le domaine du visible.

Merci de votre attention

