Semi-conducteurs Isotropes et Stables pour Cellules Solaires Organiques

SISCO

Hétérojonctions Volumiques Moléculaires

<u>Coordinateur</u> : Jean Roncali, Groupe Systèmes Conjugués Linéaires, CNRS, CIMA, Université d'Angers

Partenaire : Raymond Ziessel, Université Louis Pasteur, Strasbourg,

Polymeric Bulk Heterojunctions

Molecular Bulk Heterojunction Solar cells

- Monodisperse unequivocal chemical structure
- Synthesis, purification, reproducibility
- Structure-properties relationships

BHJ Solar Cells Based on Molecular Donors

J. Mater. Chem. 2006, 16, 3040

Adv. Funct. Mater. 2007, 17, 1163

Chem. Mater. 2006, 18, 2584

3D molecular Donors with Improved Transport Properties

 $\lambda_{max} = 400 \text{ nm}$

$$V_{oc} = 0.74 \text{ V}$$

 $J_{sc} = 3.04 \text{ mA cm}^{-2}$
 $\eta = 0.80\%$

3D Donors with Internal Charge Transfer

Effect of ICT on Voltage and Efficiency

Adv. Mater 2006, 18, 3033

Molecular Engineering of ICT

Tests comme matériau accepteur en cours

J. Org. Chem. 2007, 72, 8332

ICT and Material Stability

Non encapsulated devices stored in ambient conditions

BODIPYs as 3D Donors in Molecular BHJ

- High absorption coefficients
- High luminescence efficiency
- Photostability

BODIPYs as Donors in Molecular BHJ Solar Cells

Towards Multi-donor Molecular BHJ Solar Cells

Possible photoinduced electron transfer from each dye to C_{60}

Multi-donor molecular bulk heterojunctions

First evidences for additivity

 $V_{oc} = 0.87 \text{ V}$ $\eta = 1.70\%$

J. Mater. Chem. 2009, 19, 2298

Conclusions

- BHJ à base de donneurs moléculaire de structure chimique définie et reproductible (Nguyen 4.4% Octobre 2009)
- Donneur à ICT : réponse spectrale, voltage, stabilité
- BHJ multi-donneurs

Bilan

- P. Leriche, N. Cocherel, E. Ripaud, P Frère, J. Roncali, New J. Chem. 2009, 33, 801
- T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, *Chem. Commun.* 2009, 1673
- T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, J. Mater. Chem. 2009, 19, 2298
- P. Leriche, F. Piron, E. Ripaud, P. Frère, M. Allain, J. Roncali, *Tetrahedron Lett.* 2009, 50, 5673.
- J. Roncali Acc. Chem. Res. 2009 (in press)
- Q. Bricaud, A. Cravino, P. Leriche, J. Roncali, Solar Energy Mater. Solar Cells, 2009, 93, 1624.
- N. Hergué, P. Frère, M. Allain, J. Roncali, *Macromolecules* 2009, 42, 5593.
- Q. Bricaud, A. Cravino, P. Leriche, J. Roncali, Synth. Met, 2009, (in press)

Perspectives

Développement de nouvelles générations de donneurs moléculaires

BODIPY Donors : Structure-Properties Relationships

J_{sc} mA cm ⁻²	1.60	3.04	3.46
V _{oc} (V)	0.28	0.65	0.63
FF (%)	27	28	31
η (%)	0.12	0.55	0.68